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Closed-Form Expressions for the Parameters
of Finned and Ridged Waveguides
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Abstract —Novel closed-form expressions for the cutoff frequency and

the characteristic impedance of finned and ridged waveguides are pre-

sented. Agreement with previously published numerical data is better than

one percent for all parameters of practical interest. The expressions

considerably facilitate computer aided design and tolerance analysis of

ridged wavegnide structures without compromise in accuracy.

I. INTRODUCTION

R IDGED WAVEGUIDES find many applications by

virtue of their large inherent bandwidth and low

characteristic impedance. Furthermore, planar microwave

and millimeter-wave circuits of the type described by

Konishi [1], [2] as well as fin lines [3], [4] can be analyzed

and designed using ridged waveguide theory.

The ridged waveguide is well documented [5]-[9]. How-

ever, the designer must rely either on tabulated results or

on design diagrams and graphs which are necessarily re-

stricted to a limited selection of cross-sectional dimensions.

If a different geometry is needed, one must either solve a

transcendental equation (Transverse Resonance Method)

or use a numerical technique. All these approaches lack the

flexibility and speed desirable for routine design, especially

in cases where the dimensions of the guide are continu-

ously changing (as in tapers and matching sections). Fur-

thermore, a tolerance analysis cannot be carried out easily

with these methods.

In this paper, original closed-form expressions for the

cutoff frequency and the characteristic impedance of the

dominant mode in double- and single-ridged waveguide are

derived. The special case of waveguides with thin ridges

(finned waveguides) is treated first. Then, the more general

case of ridges with finite thickness is considered. Expres-

sions are based on perturbation theory and contain empiri-

cal correction terms to assure agreement better than t one

percent with various numerical techniques.

II. ANALYSIS OF DOUBLE-RIDGED WAVEGUIDE BY

PERTURBATION THEORY

A. Cutoff Frequency

It is well known that ridges in the E-plane of a wave-

guide lower the cutoff frequency of the dominant mode

through capacitive loading. If the ridges are short and thin,
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Fig. 1. (a) A conducting band perturbs the uniform electrostatic field

between long paraflel strips. The capacitance of the strip line is in-
creased. (b) The reciprocal structure of Fig. 1(a) having a similarity to
ridged wavegwde. The increase in capacitance is the same, provided
that d = b–d’,

their effect can be accurately evaluated through perturba-

tion theory.

1) Waoeguides with Short Fins: Fig. l(a) shows the cross

section of a region bounded by parallel conducting strips

on top and bottom, and by magnetic walls on each side.

The originally uniform electric field is perturbed by a thin

conducting band suspended in the center. According to

Wheeler [11], the relative increase in static capacitance of

the line due to the band can be expressed as a ratio of

effective areas

(1)

where A, = d’2m/4 is the effective area (circumscribed

circle) of the band. A = ab is the cross section of the line,

and co is its static capacitance before introduction of the

band.

Exactly the same expression applies to the structure

shown in Fig. l(b), which is the reciprocal of Fig. l(a).

Now consider a double-ridged waveguide formed by

replacing the magnetic walls in Fig. 1(b) with electric walls.

This imposes a sinusoidal field distribution. At cutoff, the

equivalent line capacitance is proportional to the stored

field energy and is half the static value

1
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Fig. 3. Cross section of double-ridged waveguide.

where A ~a and A.~ are the cutoff wavelengths. When d; =

db, the ratio of the fin capacitances is obtained by dividing

(6) by (5)

~’—-l ~ = (Bb/Yo)(Acb/b) =~ 2b ‘In 2/)

(b) ()

——

AC. (~a/yo)(~ca/b) . ~db~db

Fig. 2. (a) Ridged wavegnide with short fins. Its normalized cutoff

()

d~

frequency is given by (4). (b) Ridged waveguide with long fins. The
–<1 . (7)
b

structure is complementary to that in Fig. 2(a) since db = dj. Its
normalized cutoff frequency is given by (8). Consequently, the normalized cutoff frequency of the ridged

guide with long fins can be written as

The variation AC, introduced by the ridges is virtually b

[ 1

. _b_ ,+ AC. ACb ““2

equal to ACO since the field is quasi-uniform in the center. A‘=2acb C, “ AC.

Thus

[

2b 1
–1/2

d“r (b- d)zm
=+ l+~~ln—

ACl ACO
(d, <b, a). (8)

(d’< b,a). (2)
vdb

—.— .— .
c, co/2 2ab 2ab 3) Waoegzddes with Fins of any Length: Both (4) and (8)

Since the magnetic field is practically unperturbed by the can be derived from one single expression

centraJ ridge, the shift in cutoff frequency is solely due to b

[
~ l+~~lncsc~~ 1

–1/2

the change in capacitance A<=2a
(9)

where ~CO= c/A,0 is the cutoff frequency of the un-

perturbed waveguide, and ~C, = c/Ac, is the cutoff

frequency of the ridged waveguide. c is the speed of light.

With ACO= 2a, the normalized cutoff frequency of the

ridged waveguide becomes

5+[1+%-3’-”2‘b-d<ba) ‘4)
This expression is satisfactory for guides with short fins.

2) Waveguides with Long Fins: In practice, waveguides

with long thin ridges (d/b << 1) are of much greater inter-

est, but, since the perturbation is large, (4) cannot’ be

applied. Fortunately, from Marcuvitz’s work on the suscep-

tance of capacitive windows [8], a relation between the

capacitances of complementary long and short fins can be

derived. Fig. 2 presents two such complementary struc-

tures. Marcuvitz shows that the normalized susceptance of

the short fins is

%“+72(%)2(%<<1)‘5)
and of the long fins is

(6)

which transforms into (4) for (b – d)/b <<1, and into (8)

for d/b <<1.

Since these expressions have been derived by assuming

that the waveguide fields are only altered in the immediate

vicinity of the ridges, the accuracy of (9) deteriorates with

increasing ratio b/a. It is therefore necessary to correct (9)

by taking second-order effects into account. The required

correction cannot be determined analytically. However, it

has been found empirically that if the second term in (9) is

multiplied by a factor 1 + 0.2~, the resulting expres-

sion (10) agrees with various numerical methods [10], [15]

to within one percent in the ranges O < b/a< 1 and 0.01<

d/b G 1

Since the numerical techniques differ among themselves

within this margin, the corrected perturbation formula (10)

is equally reliable and accurate, and certainly more flexible

than graphical design data.

4) Waveguides with Thick Ridges of any Length: Ridges

of finite thickness add a second capacitance AC2 to the

waveguide. To a first approximation, ACZ is the capaci-

tance of parallel plates of width s and separation d (see

Fig. 3)

AC2 ~cOs/d. (11)

At the same time, the width of the “unperturbed” part



2192 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MT1-30, NO. 12, DECEMBER 1982

of the waveguide is reduced from a to a –s. This means

that the unperturbed reference guide now possesses an

aspect ratio of b/( a –s ), and its equivalent capacitance is

reduced to

1 a–s

c2=~c0 b
(12)

where the factor 1/2 stems from the sinusoidal distribution

of the field in the guide. The relative change in capacitance

is thus

AC2 . 2sb

C2 = d(a–s) “
(13)

By adding this term to the perturbation formula (10) for

thin ridges, and after replacing a with a –s, an expression

for the normalized cutoff frequency in guides with thick

ridges is obtained. But, again, the term (13) does not

account for second-order effects which must be evaluated

empirically by comparison with numerical methods. As a

result, the following corrected perturbation formula is ob-

tained for ridged waveguide:

:=2(:-s, [l+:[l+02K)Alncscf:

I

– 1/2

(

sb
+ 2.45+0.21

)
(14)

a d(a–s) “

This formula agrees with numerical methods within one

percent in the following ranges of parameters:

0.01+1

0<: <0.45.

For s/a >0.45, accuracy decreases rapidly because of the

mounting influence of the side walls upon the field at the

ridges. At s/a = 0.5 (the largest ridge width of practical

interest), (14) is two percent too high in the worst case:

d/b = 0.5. Naturally, (10) and (14) are equivalent for

S=o.

Finally, the guided wavelength for any frequency is

related to the cutoff wavelength by

Ag = [1 -( A/Ac,)2]-”2

where X is the free-space wavelength.

(15)

B. Characteristic Impedance

The characteristic impedance of ridged waveguide is not

uniquely defined. The choice of definition depends on the

application of the waveguide. While Hopfer [6] adopts a

definition on a voltage-to-power basis for the design of a

step transformer, Cohn [5] and Chen [7] choose a voltage-

to-current ratio. For predicting the interaction of fin lines

(of which ridged waveguide is a special case) with semicon-

Fig. 4. Dimensions of the single-ridged waveguide that must be in-
troduced in the expressions for the cutoff frequency and characteristic
impedance.

ductor devices, Hofmann [12] and Meinel and Rembold

[13] divide the voltage between the fins, calculated along a

straight line, by the current in one ridge only.

Whatever definition of characteristic impedance may be

adopted, its value depends on the frequency as follows:

zo=zo@[l -( A/Acr)2]-”2 (16)

where Zo@ is the characteristic impedance for infinite

frequency, and AC, is given by (14). Sharma and Hoefer

[14] have derived the following formula for Zom:

z
Om =

120n2(b/’AC,)

[

b.sb B

( )]

(17)

‘+tan~~ E
sb

d–slnnz~+ Y. 2 AC, b cos”%~

where a, b, s, and d are defined in Fig. 3.

The normalized cutoff frequency b/Acr is given by (14)

and the normalized susceptance B./Y. is approximately,

according to Marcuvitz [8]

Bo/Yo ~ (2b/AC,)lncsc ~. (18)

Zo~ in (17) is a voltage-to-current ratio. The voltage is the

integral of the electric field taken along a straight line

joining the ridges in the middle of the guide. The current is

the integral of the surface current flowing in the top wall

including the upper ridge.

III. APPLICATION TO SINGLE-RIDGED WAVEGUIDE

All formulas derived above for double-ridged waveguide

can be applied to the single-ridged waveguide with the

following interpretation. In the expression for the cutoff

frequency (14), b is twice the height of the single-ridged

guide. and d is twice the spacing between the ridge and the

bottom wall (see Fig. 4).

The same interpretation applies to the expression for

characteristic impedance (17). Finally, this impedance must
be divided by two to obtain the value for single-ridged

waveguide.

IV. DISCUSSION

The expression for the normalized cutoff frequency (10)

of finned waveguide is presented graphically in Fig. 5

against the background of values obtained with numerical

methods.

Excellent agreement exists within the full range of geom-

etries of practical interest. A more detailed evaluation of
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Fig. 5. Normalized cutoff frequency of finned waveguide (s= O). The

closed-form expression (10) is compared with numericaf methods.

TABLE I

COMPARISON BETWEEN THE PROPOSED DESIGN EQUATION (10)
AND VARIOUS NUMERICAL METHODS [10], [15]

II Normalized Cutoff Freq (b/i ~r) of the Dominant

4d/b
TRM

2/3 0.2389

L
l/2 0.2249

1/3 0.2052

114 0.1928

1/8 0.1690

1/16 0.1518

1/32 0.1388

Made n Finned Wavegu=de (s = 0)

TLM FEM

0.2391

0.2253 0.2258

0.2054

0.1932 0.1941

0.1697 0.1710

0.1522
1-

S Dfl

0.2249

0.1935

0.1696

0.1523

P~~~~~~D

EQUATION (101

0.2379

0.2234

0.2039

0.1919

0.1690

0.1525

0.1400

TRM = Transverse Resonance Method
TLM = Transmission Line Matrix Method
FEM = Finite Element Method

SDM = Spectral Domain Method

agreement can be made by studying Table I which

compares the proposed design equation with results of four

completely different numerical methods.

In Fig. 6, the formula for the waveguide with ridges of

finite thickness (14) is compared with data published by

Hopfer [6]. Actually, Fig. 6 shows the normalized cutoff

wavelength A,, /a which is related to the normalized cutoff

frequency b/A,, as follows:

(19)

Agreement is better than one percent for s/a values up to

0.45 in the most unfavorable case of d/b= 0.5. Higher

values of s/a are seldom of practical interest.

The closed-form design expressions (10) and (14) have

the following advantages over all other methods published

:

2

U?+
<
<:
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Fig. 6. Normalized cutoff wavelength of ridged waveguide. The closed-

form expression (14) is compared with values published by Hopfer [6].

to date: they are easily, and quickly evaluated by hand or

programmed on a computer or calculator; they can be used

for design as well as for analysis since any parameter can

be isolated on one side of the equation; they can be easily

differentiated with respect to any parameter to determine

sensitivity to tolerances; they are less subject to computa-

tion error than all other methods; and they are ideally

suited for computer aided design and manufacturing of

circuits, in particular when dimensions vary continuously.

The accuracy of the expression for the characteristic

impedance (17) is the same as that of (14) but its usefulness

depends on the adequacy of its definition in a particular

situation.

V. CONCLUSION

Closed-form expressions for the cutoff frequency and the

characteristic impedance of ridged waveguide have been

developed. Initially, first-order expressions have been de-

rived using perturbation theory and Marcuvitz’ formulas

for the susceptance of capacitive windows. Then, corrective

terms were introduced empirically to account for second-

order effects. The resulting expressions agree with numeri-

cal methods within one percent for all geometrical parame-

ters of practical interest. Because of their simplicity, these

new expressions considerably simplify the design of ridged

waveguides without any concession in accuracy. They have

the advantage of great flexibility, can be differentiated

directly for tolerance analysis, and may be easily pro-

grammed for computer aided design and manufacturing.

REFERENCES

[1] Y. Konishi and K. Uenakada,“ The design of a bandpass filter with
inductive strip— Planar cmcuit mounted in waveguide,” IEEE Tram.
J4wrowaoe Theoty Tech., vol. M’IT22. pp. 869-873, Oct. 1974.

[2] Y. Konishl, “Planar circuit mounted in waveguide used as a down-



-<a.
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 12, DECEMBER 1982,L1Y4

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

converter,” IEEE Trans. Microwave Theoy Tech., vol. MTT-26, pp.

716-719, Oct. 1978.
P. J. Meier, “Integrated fin line millimeter components,” IEEE

Trans. Microwave Theory Tech., vol. MTT-22, pp. 1209– 1216, Dec.

1974.
W. J. R. Hoefer, ” Fin line design made easy,” presented at the 1978
IEEE-MTT-S Znt. Microwaoe Symp. (Ottawa, Canada).

S. B. Cohn, ” Properties of ridge waveguide~ Proc. IRE, vol. 35, pp.
783-788, Aug. 1947.

S. Hopfer, “The design of ridged waveguides,” IRE Trans. Micro-
war)e Theory Tech., vol. MTT-3, pp. 20–29, Oct. 1955.
T.-S. Chen, “Calculation of the parameters of ridge wavegnide,”
IRE Trans. Microwave Theory Tech., vol. MTT-5, pp. 12– 17, Jan.

1957.

N. Marcuvitz, Waveguide Handbook, MIT Radiation Lab. Series,

no. 10, Boston Technical Publishers Inc., 1964.

W. J. Getsinger, ” Ridge waveguide field description and application
to directional couplers;’ IRE Trans. Microwave Theory Tech., vol.

Ml_’T-IO, pp. 41-50, Jan. 1962.

A. K. Sharma, G. Costache, arsd W. J. R. Hoefer, “Cutoff in fin
lines evaluated with the spectrrd domain technique and with the
finite element method; in 1981 ZEEE/AP In?. Symp. Dig., (Los
Angeles, CA), pp. 308-311.
H. A. Wheeler, “Coupling holes between resonant cavities or wave-
guides evaluated in terms of volume ratiosfl IEEE Trans. Micro-
wave Theo~ Tech., vol. MTT- 12, pp. 231 –244, Mar. 1964.
H. Hofmarm, private communication.
H. Meinel and B. Rembold, “New millimeter-wave fin line attenua-

tors and switches,” “m 1979 IEEE-MTT-S Int. Microwave Symp.

Dig., (Orlando, FL), pp. 249-251.

A. K. Sharma and W. J. R. Hoefer, “Empirical expressions for fin

line design,” accepted for publication in the IEEE Trans. Micro-

wave Theory Tech., Apr. 1983.
Y. C. Shih and W. J. R. Hoefer, “The accuracy of TLM-analysis of
finned rectangular waveguides~’ IEEE Trans. Microwaoe Theo~

Tech., vol. MTT-28, pp. 743-746, July 1980.

Wolfgang J. R. Hoefer (M71–SM’78) was born

in Urmitz/Rhein, Germany, on February 6, 1941.
He received the diploma in electrical engineering

from the Technische Hochschule Aachen,
Aachen, Germany, in 1964, and the D.Ing. de-

gree from the University of Grenoble, Grenoble,
France, in 1968,

After one year of teaching and research at the
Institut Universitaire de Technologies, Grenoble,

France, he joined the Department of Electrical
Emzineerimz. the University of Ottawa. Ottawa.

Ont., Canada, and is currer%ly a P~ofessor in this department. ‘During a
sabbatical year in 1976– 77, he spent six months with the Space Division
of the AEG-Telefuriken in Backnang, Germany, and six months with the
Institut National Polytecfrnique de Grenoble, France. His research inter-

ests include microwave measurement techniques, millimeter-wave circuit

design, and numerical techniques for solving electromagnetic problems.

Dr. Hoefer is a registered Professional Engineer in the Province of

Ontario, Canada.

Miles N. Burton was born in Neepawa, Manitoba,
in 1950. He received the B. SC.E.E. degree from

the University of Manitoba in 1980.

From 1980 to 1981 he worked in the Security

Systems Division of Computing Devices Co. in

Ottawa, Canada. Since 1981 he has been a
graduate student in the Department of Electrictd

Engineering, University of Ottawa. His research

activities are in the area of microwave circuits.

A Compact Broad-Band Multifunction ECM
MIC Module
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Afrsfract.-A development effort is described that yielded a compact

broad-band ECM module using soft and hard substrate material employing

microstrip, slotline, and coplanar line. Integrated fnnctions include cou-

pling, limiting, upeonversion, downconversion, broad-band amplification,

amplitude modulation, switching, gating, and stable frequency generation.

A high-level frequency converter with a + 28-dBm intercept point resulted

in high dynamic range, spurious-free operation ( – 45 dBc). Extremely flat

Manuscript received April 19, 1982; revised July 22, 1982.
E. Niehenke, J. Rosen, L. Dickens, and J. Faulkner are with West-

inghouse Electric Corp., Baltimore, MD 21203.
R. Hess was with Westinghouse Electric Corp., Baltimore, MD, and is

now with Stable Energy Sources, Lancaster, PA 17603.

amplification with low-current drain is achieved with dktributed and cascode

FET amplifiers at S – C and X-bands.

I. INTRODUCTION

R EDUCING THE size, weight, and power consump-

tion of modern electronic systems requires compact,

efficient, plug-in, multifunction modules. Key parameters

are broad bandwidth, flat frequency response, low power

consumption, high speed, high dynamic range, and low

spurious signal gene~ation. This paper describes details of

the microwave substrate materials and layout to miniaturize
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