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Closed-Form Expressions for the Parameters
of Finned and Ridged Waveguides

WOLFGANG J. R. HOEFER, SENIOR MEMBER, IEEE, AND MILES N. BURTON, STUDENT MEMBER, IEEE

Abstract —Novel closed-form expressions for the cutoff frequency and
the characteristic impedance of finned and ridged waveguides are pre-
sented. Agreement with previously published numerical data is better than
one percent for all parameters of practical interest. The expressions
considerably facilitate computer aided design and tolerance analysis of
ridged waveguide structures without compromise in accuracy.

I. INTRODUCTION

R IDGED WAVEGUIDES find many applications by
virtue of their large inherent bandwidth and low
characteristic impedance. Furthermore, planar microwave
and millimeter-wave circuits of the type described by
Konishi [1], [2] as well as fin lines [3], [4] can be analyzed
and designed using ridged waveguide theory.

The ridged waveguide is well documented [5]-[9]. How-
ever, the designer must rely either on tabulated results or
on design diagrams and graphs which are necessarily re-
stricted to a limited selection of cross-sectional dimensions.
If a different geometry is needed, one must either solve a
transcendental equation (Transverse Resonance Method)
or use a numerical technique. All these approaches lack the
flexibility and speed desirable for routine design, especially
in cases where the dimensions of the guide are continu-
ously changing (as in tapers and matching sections). Fur-
thermore, a tolerance analysis cannot be carried out easily
with these methods.

In this paper, original closed-form expressions for the
cutoff frequency and the characteristic impedance of the
dominant mode in double- and single-ridged waveguide are
derived. The special case of waveguides with thin ridges
(finned waveguides) is treated first. Then, the more general
case of ridges with finite thickness is considered. Expres-
sions are based on perturbation theory and contain empiri-
cal correction terms to assure agreement better than + one
percent with various numerical techniques.

II. ANALYSIS OF DOUBLE-RIDGED WAVEGUIDE BY
PERTURBATION THEORY

A. Cutoff Frequency

It is well known that ridges in the E-plane of a wave-
guide lower the cutoff frequency of the dominant mode
through capacitive loading. If the ridges are short and thin,
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Fig. 1. (a) A conducting band perturbs the uniform electrostatic field
between long parallel strips. The capacitance of the strip line is in-
creased. (b) The reciprocal structure of Fig. 1(a) having a similarity to
ridged wavegmde. The mncrease in capacitance is the same, provided
that d=b-d’.

their effect can be accurately evaluated through perturba-
tion theory.

1) Waveguides with Short Fins: Fig. 1(a) shows the cross
section of a region bounded by parallel conducting strips
on top and bottom, and by magnetic walls on each side.
The originally uniform electric field is perturbed by a thin
conducting band suspended in the center. According to
Wheeler [11], the relative increase in static capacitance of
the line due to the band can be expressed as a ratio of
effective areas

AC, A4

2 (&'<b.a)

G A (1)

where A, =d?m/4 is the effective area (circumscribed
circle) of the band. 4 = gb is the cross section of the line,
and C, is its static capacitance before introduction of the
band.

Exactly the same expression applies to the structure
shown in Fig. I(b), which is the reciprocal of Fig. 1(a).

Now consider a double-ridged waveguide formed by
replacing the magnetic walls in Fig. 1(b) with electric walls.
This imposes a sinusoidal field distribution. At cutoff, the
equivalent line capacitance is proportional to the stored
field energy and is half the static value
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Fig. 2. (a) Ridged waveguide with short fins. Its normalized cutoff
frequency is given by (4). (b) Ridged waveguide with long fins. The
structure is complementary to that in Fig. 2(a) since d,=4/. Its
normalized cutoff frequency is given by (8).

The variation AC, introduced by the ridges is virtually
equal to AC, since the field is quasi-uniform in the center.
Thus

éﬂ ACO dlz (2
¢ G/ 2 2ab )
Since the magnetic field is practically unperturbed by the

central ridge, the shift in cutoff frequency is solely due to
the change in capacitance

_(b—d)’n
2ab

(d’<b,a).

fo _Ao . \/C1+AC, —\/1+ AC,
f cr ACO Cl Cl
where f,,=c/A, is the cutoff frequency of the un-
perturbed waveguide, and f, =c¢/A, is the cutoff
frequency of the ridged waveguide. ¢ is the speed of light.

With A, =24, the normalized cutoff frequency of the
ridged waveguide becomes

b éi{1+wb( d

2]-1,2
1 IR 1—5)] (b—d<b,a). (4)

(3)

This expression is satisfactory for guides with short fins.

2) Waveguides with Long Fins: In practice, waveguides
with long thin ridges (d /b < 1) are of much greater inter-
est, but, since the perturbation is large, (4) cannot be
applied. Fortunately, from Marcuvitz’s work on the suscep-
tance of capacitive windows [8], a relation between the
capacitances of complementary long and short fins can be
derived. Fig. 2 presents two such complementary struc-
tures. Marcuvitz shows that the normalized susceptance of
the short fins is

B, A, . [md\? d,
73 _2( 2b) (7<<1) (5)

and of the long fins is

B, A . 2b dy
—ﬁ;- b =41n de ( <<1)

(6)
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Fig. 3. Cross section of double-ridged waveguide.

where A, and A, are the cutoff wavelengths. When d, =
d,, the ratio of the fin capacitances is obtained by dividing
(6) by (5)

AC, _ (By/Y)(Men/b) _ 2( 2 )21 2
ACH (Ba/},())()\ca/b) de

7d,
(—,f < 1). )
Consequently, the normalized cutoff frequency of the ridged
guide with long fins can be written as
b b, AG AG, |72
A, 2a C, AC,
b 4b, 2|7V
2a[1+————ln;7-‘-1;] (db<<b,a). (8)
3) Waveguides with Fins of any Length: Both (4) and (8)
can be derived from one single expression
b b [ 4 b T d] /2

== 1+——1ncsc——

PV 7Y L 25 %)
which transforms into (4) for (b —d)/b <1, and into (8)

ford/b<1.

Since these expressions have been derived by assuming
that the waveguide fields are only altered in the immediate
vicinity of the ridges, the accuracy of (9) deteriorates with
increasing ratio b/a. It is therefore necessary to correct (9)
by taking second-order effects into account. The required
correction cannot be determined analytically. However, it
has been found empirically that if the second term in (9) is
multiplied by a factor 1+0.2y/b/a, the resulting expres-
sion (10) agrees with various numerical methods [10], [15]

to w1th1n one percent in the ranges 0 < b/a <1 and 0.01
d/b<
b b d]-172 -
A" 2a [ (1+0 2\/b/a)—1ncsc§—b-J . (10)

Since the numerical techniques differ among themselves
within this margin, the corrected perturbation formula (10)
is equally reliable and accurate, and certainly more flexible
than graphical design data.

4) Waveguides with Thick Ridges of any Length: Ridges
of finite thickness add a second capacitance AC, to the
waveguide. To a first approximation, AC, is the capaci-
tance of parallel plates of width s and separation d (see
Fig. 3)

AC, =¢,5/d. (11)
At the same time, the width of the “unperturbed” part



2192

of the waveguide is reduced from a to a—s. This means
that the unperturbed reference guide now possesses an
aspect ratio of b/(a-s), and its equivalent capacitance is
reduced to

(12)

where the factor 1,2 stems from the sinusoidal distribution
of the field in the guide. The relative change in capacitance
is thus

5, 2

C, d(a-s)’ (13)

By adding this term to the perturbation formula (10) for
thin ridges, and after replacing ¢ with a—s, an expression
for the normalized cutoff frequency in guides with thick
ridges is obtained. But, again, the term (13) does not
account for second-order effects which must be evaluated
empirically by comparison with numerical methods. As a
result, the following corrected perturbation formula is ob-
tained for ridged waveguide:

b b

T 1+0.2
AC?‘ 2(a_s)

1+2
T

b b lncsczé
a—s la—s 2 b

+(2.45+0.25)

a

—1/2
sb
'd‘(“—>l 09

This formula agrees with numerical methods within one
percent in the following ranges of parameters:

001<-—-x1

0<—x1

0<—<045.

Qlw 2l o

For s/a > 0.45, accuracy decreases rapidly because of the
mounting influence of the side walls upon the field at the
ridges. At s/a=0.5 (the largest ridge width of practical
interest), (14) is two percent too high in the worst case:
d/b=105. Naturally, (10) and (14) are equivalent for
s=0.

Finally, the guided wavelength for any frequency is
related to the cutoff wavelength by

-1/2
A=[1-(a/a,)]
where A is the free-space wavelength.

(15)

B. Characteristic Impedance

The characteristic impedance of ridged waveguide is not
uniquely defined. The choice of definition depends on the
application of the waveguide. While Hopfer [6] adopts a
definition on a voltage-to-power basis for the design of a
step transformer, Cohn [5] and Chen [7] choose a voltage-
to-current ratio. For predicting the interaction of fin lines
(of which ridged waveguide is a special case) with semicon-

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 12, DECEMBER 1982

"7
b/2 I_TJ
| d/2
: a J

Fig. 4. Dimensions of the single-ridged waveguide that must be in-
troduced in the expressions for the cutoff frequency and characteristic
impedance.

ductor devices, Hofmann [12] and Meinel and Rembold
[13] divide the voltage between the fins, calculated along a
straight line, by the current in one ridge only.

Whatever definition of characteristic impedance may be
adopted, its value depends on the frequency as follows:

ZO=ZOOO|:1—(}\/>\cr)2]71/2 (16)

where Z,  is the characteristic impedance for infinite
frequency, and A, is given by (14). Sharma and Hoefer
[14] have derived the following formula for Z,_:

ZOoo_

12072(b/A
~in—s—b+§9+tnfb(a_s) s b
R S W AR T W W | Rk W

where a, b, s, and d are defined in Fig. 3.

The normalized cutoff frequency b/A , is given by (14)
and the normalized susceptance B, /Y, is approximately,
according to Marcuvitz [8]

wd

35" (18)

Z,, in (17) 1s a voltage-to-current ratio. The voltage is the
integral of the clectric ficld taken along a straight line
joining the ridges in the middle of the guide. The current is
the integral of the surface current flowing in the top wall
including the upper ridge.

B, /Yy =(2b/A,,)Incsc

III.

All formulas derived above for double-ridged waveguide
can be applied to the single-ridged waveguide with the
following interpretation. In the expression for the cutoff
frequency (14), b is twice the height of the single-ridged
guide, and 4 is twice the spacing between the ridge and the
bottom wall (see Fig. 4).

The same interpretation applies to the expression for
characteristic impedance (17). Finally, this impedance must
be divided by two to obtain the value for single-ridged
waveguide.

APPLICATION TO SINGLE-RIDGED WAVEGUIDE

IV. DiSCUSSION

The expression for the normalized cutoff frequency (10)
of finned waveguide is presented graphically in Fig. S
against the background of values obtained with numerical
methods.

Excellent agreement exists within the full range of geom-
etries of practical interest. A more detailed evaluation of
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Fig. 5. Normalized cutoff frequency of finned waveguide (s = 0). The
closed-form expression (10) is compared with numerical methods.

TABLEI
COMPARISON BETWEEN THE PROPOSED DEsIGN EQuaTiON (10)
AND VARIOUS NUMERICAL METHODS [10], [15]

Normalized Cutoff Freq. (b/kcr) of the Dominant
Mode 1in Finned Waveguide (s = 0)
b/a = 1/2
a/p PERERER"
TRM TLM FEM SDM : EQUATION (10)

2/3 |10.2389 0.2391 - - 0.2379
172 ||0.2249 0.2253 0.2258 0.2249 0.2234
1/3 {]0.2052 | 0.2054 - - 0.2039
174 llo.1928 | 0.1932 0.1941 0.1935 0.1919
178 [[0.1690 0.1697 0.1710 0.1696 0.1690
1/16 (| 0.1518 0.1522 - 0.1523 0.1525
1/32 ||0.1388 - - - 0.1400

TRM = Transverse Resonance Method

TLM = Transmission Line Matrix Method

FEM = Finite Element Method

SDM = Spectral Domain Method

this agreement can be made by studying Table I which
compares the proposed design equation with results of four
completely different numerical methods.

In Fig. 6, the formula for the waveguide with ridges of
finite thickness (14) is compared with data published by
Hopfer [6]. Actually, Fig. 6 shows the normalized cutoff
wavelength A, /a which is related to the normalized cutoff
frequency b/, as follows:

1 b
Acr/a_ b/}\cr'z'

Agreement is better than one percent for s /a values up to
0.45 in the most unfavorable case of d/b=0.5. Higher
values of s/a are seldom of practical interest.

The closed-form design expressions (10) and (14) have
the following advantages over all other methods published

(19)
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Fig. 6. Normalized cutoff wavelength of ridged waveguide. The closed-
form expression (14) is compared with valaes published by Hopfer [6].

to date: they are easily and quickly evaluated by hand or
programmed on a computer or calculator; they can be used
for design as well as for analysis since any parameter can
be isolated on one side of the equation; they can be easily
differentiated with respect to any parameter to determine
sensitivity to tolerances; they are less subject to computa-
tion error than all other methods; and they are ideally
suited for computer aided design and manufacturing of
circuits, in particular when dimensions vary continuously.

The accuracy of the expression for the characteristic
impedance (17) is the same as that of (14) but its usefulness
depends on the adequacy of its definition in a particular
situation.

V. CONCLUSION

Closed-form expressions for the cutoff frequency and the
characteristic impedance of ridged waveguide have been
developed. Initially, first-order expressions have been de-
rived using perturbation theory and Marcuvitz’ formulas
for the susceptance of capacitive windows. Then, corrective
terms were introduced empirically to account for second-
order effects. The resulting expressions agree with numeri-
cal methods within one percent for all geometrical parame-
ters of practical interest. Because of their simplicity, these
new expressions considerably simplify the design of ridged
waveguides without any concession in accuracy. They have
the advantage of great flexibility, can be differentiated
directly for tolerance analysis, and may be easily pro-
grammed for computer aided design and manufacturing.
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A Compact Broad-Band Multifunction ECM
MIC Module
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Abstract —A development effort is described that yielded a compact
broad-band ECM module using soft and hard substrate material employing
microstrip, slotline, and coplanar line. Integrated functions include coun-
pling, limiting, upconversion, downconversion, broad-band amplification,
amplitude modulation, switching, gating, and stable frequency generation.
A high-level frequency converter with a + 28-dBm intercept point resulted
in high dynamic range, spurious-free operation (—45 dBc). Extremely flat
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amplification with low-current drain is achieved with distributed and cascode
FET amplifiers at S—C and X-bands.

I. INTRODUCTION

EDUCING THE size, weight, and power consump-

tion of modern electronic systems requires compact,
efficient, plug-in, multifunction modules. Key parameters
are broad bandwidth, flat frequency response, low power
consumption, high speed, high dynamic range, and low
spurious signal generation. This paper describes details of
the microwave substrate materials and layout to miniaturize
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